\(\int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [33]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 122 \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {4 a \cos (c+d x)}{5 d \sqrt {a+a \sin (c+d x)}}-\frac {2 a \cos (c+d x) \sin ^3(c+d x)}{7 d \sqrt {a+a \sin (c+d x)}}+\frac {8 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{35 d}-\frac {12 \cos (c+d x) (a+a \sin (c+d x))^{3/2}}{35 a d} \]

[Out]

-12/35*cos(d*x+c)*(a+a*sin(d*x+c))^(3/2)/a/d-4/5*a*cos(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-2/7*a*cos(d*x+c)*sin(d*
x+c)^3/d/(a+a*sin(d*x+c))^(1/2)+8/35*cos(d*x+c)*(a+a*sin(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2849, 2838, 2830, 2725} \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {2 a \sin ^3(c+d x) \cos (c+d x)}{7 d \sqrt {a \sin (c+d x)+a}}-\frac {12 \cos (c+d x) (a \sin (c+d x)+a)^{3/2}}{35 a d}+\frac {8 \cos (c+d x) \sqrt {a \sin (c+d x)+a}}{35 d}-\frac {4 a \cos (c+d x)}{5 d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Sin[c + d*x]^3*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-4*a*Cos[c + d*x])/(5*d*Sqrt[a + a*Sin[c + d*x]]) - (2*a*Cos[c + d*x]*Sin[c + d*x]^3)/(7*d*Sqrt[a + a*Sin[c +
 d*x]]) + (8*Cos[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(35*d) - (12*Cos[c + d*x]*(a + a*Sin[c + d*x])^(3/2))/(35*
a*d)

Rule 2725

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x
]])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 2838

Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) -
a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 2849

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[2*n*((b*c + a*d)
/(b*(2*n + 1))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a \cos (c+d x) \sin ^3(c+d x)}{7 d \sqrt {a+a \sin (c+d x)}}+\frac {6}{7} \int \sin ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {2 a \cos (c+d x) \sin ^3(c+d x)}{7 d \sqrt {a+a \sin (c+d x)}}-\frac {12 \cos (c+d x) (a+a \sin (c+d x))^{3/2}}{35 a d}+\frac {12 \int \left (\frac {3 a}{2}-a \sin (c+d x)\right ) \sqrt {a+a \sin (c+d x)} \, dx}{35 a} \\ & = -\frac {2 a \cos (c+d x) \sin ^3(c+d x)}{7 d \sqrt {a+a \sin (c+d x)}}+\frac {8 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{35 d}-\frac {12 \cos (c+d x) (a+a \sin (c+d x))^{3/2}}{35 a d}+\frac {2}{5} \int \sqrt {a+a \sin (c+d x)} \, dx \\ & = -\frac {4 a \cos (c+d x)}{5 d \sqrt {a+a \sin (c+d x)}}-\frac {2 a \cos (c+d x) \sin ^3(c+d x)}{7 d \sqrt {a+a \sin (c+d x)}}+\frac {8 \cos (c+d x) \sqrt {a+a \sin (c+d x)}}{35 d}-\frac {12 \cos (c+d x) (a+a \sin (c+d x))^{3/2}}{35 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.16 \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {a (1+\sin (c+d x))} \left (-105 \cos \left (\frac {1}{2} (c+d x)\right )-35 \cos \left (\frac {3}{2} (c+d x)\right )+7 \cos \left (\frac {5}{2} (c+d x)\right )+5 \cos \left (\frac {7}{2} (c+d x)\right )+105 \sin \left (\frac {1}{2} (c+d x)\right )-35 \sin \left (\frac {3}{2} (c+d x)\right )-7 \sin \left (\frac {5}{2} (c+d x)\right )+5 \sin \left (\frac {7}{2} (c+d x)\right )\right )}{140 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )} \]

[In]

Integrate[Sin[c + d*x]^3*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Sqrt[a*(1 + Sin[c + d*x])]*(-105*Cos[(c + d*x)/2] - 35*Cos[(3*(c + d*x))/2] + 7*Cos[(5*(c + d*x))/2] + 5*Cos[
(7*(c + d*x))/2] + 105*Sin[(c + d*x)/2] - 35*Sin[(3*(c + d*x))/2] - 7*Sin[(5*(c + d*x))/2] + 5*Sin[(7*(c + d*x
))/2]))/(140*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))

Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.60

method result size
default \(\frac {2 \left (1+\sin \left (d x +c \right )\right ) a \left (\sin \left (d x +c \right )-1\right ) \left (5 \left (\sin ^{3}\left (d x +c \right )\right )+6 \left (\sin ^{2}\left (d x +c \right )\right )+8 \sin \left (d x +c \right )+16\right )}{35 \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(73\)

[In]

int(sin(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/35*(1+sin(d*x+c))*a*(sin(d*x+c)-1)*(5*sin(d*x+c)^3+6*sin(d*x+c)^2+8*sin(d*x+c)+16)/cos(d*x+c)/(a+a*sin(d*x+c
))^(1/2)/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.91 \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {2 \, {\left (5 \, \cos \left (d x + c\right )^{4} + 6 \, \cos \left (d x + c\right )^{3} - 12 \, \cos \left (d x + c\right )^{2} + {\left (5 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )^{2} - 13 \, \cos \left (d x + c\right ) + 9\right )} \sin \left (d x + c\right ) - 22 \, \cos \left (d x + c\right ) - 9\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{35 \, {\left (d \cos \left (d x + c\right ) + d \sin \left (d x + c\right ) + d\right )}} \]

[In]

integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/35*(5*cos(d*x + c)^4 + 6*cos(d*x + c)^3 - 12*cos(d*x + c)^2 + (5*cos(d*x + c)^3 - cos(d*x + c)^2 - 13*cos(d*
x + c) + 9)*sin(d*x + c) - 22*cos(d*x + c) - 9)*sqrt(a*sin(d*x + c) + a)/(d*cos(d*x + c) + d*sin(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sin(d*x+c)**3*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \sin \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*sin(d*x + c)^3, x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.98 \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {2} {\left (105 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 35 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {3}{4} \, \pi + \frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 7 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {5}{4} \, \pi + \frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 5 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {7}{4} \, \pi + \frac {7}{2} \, d x + \frac {7}{2} \, c\right )\right )} \sqrt {a}}{140 \, d} \]

[In]

integrate(sin(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/140*sqrt(2)*(105*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c) + 35*sgn(cos(-1/4*pi + 1
/2*d*x + 1/2*c))*sin(-3/4*pi + 3/2*d*x + 3/2*c) + 7*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-5/4*pi + 5/2*d*x
+ 5/2*c) + 5*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-7/4*pi + 7/2*d*x + 7/2*c))*sqrt(a)/d

Mupad [F(-1)]

Timed out. \[ \int \sin ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int {\sin \left (c+d\,x\right )}^3\,\sqrt {a+a\,\sin \left (c+d\,x\right )} \,d x \]

[In]

int(sin(c + d*x)^3*(a + a*sin(c + d*x))^(1/2),x)

[Out]

int(sin(c + d*x)^3*(a + a*sin(c + d*x))^(1/2), x)